Subscribe to Metropolis

Science for Designers: Complex Adaptive Systems


Monday, August 6, 2012 8:00 am

Today the world of design is in a position to benefit enormously from advances in sciences, mathematics and particularly, geometry—probably not in a way that many designers think.

As humans we are remarkably good at conceiving the world as a collection of objects, their geometric attributes, and the ways they can be taken apart and re-assembled to do spectacular things (either perform marvelous tasks for us, or provide an aesthetic spectacle, or both). This way of designing underlies much of our powerful technology—yet as modern science reminds us, it’s an incomplete way. Critical systemic effects have to be integrated into the process of design, without which we are likely to trigger operational failures and even disasters.

Today we are experiencing just these kinds of failures in large-scale systems like ecology. As designers (of any kind) we must learn to manage environments not just as collections of objects, but also as connected fields with essential features of geometric organization, extending dynamically through time as well as space. This is a key lesson from the relatively recent understanding of the dynamics of “complex adaptive systems,” and from applications in fields like biology and ecology.

At issue is not just avoiding failures. Though our designs can certainly be impressive, nature’s “designs” routinely put us humans to shame. No aircraft can maneuver as nimbly as an eagle (or a fruit fly, for that matter), and no supercomputer can do what an ordinary human brain does. The sophistication and power of these designs lies in their complex geometric structures, and more particularly, in the processes by which those structures are evolved and transformed within groupings or systems.

M15-Fig1-Mikhail Rogov

The ecosystem of a coral reef requires continuous mutual adaptation of individuals and species, like Yolanda Reef in Ras Muhammad nature park, Sinai, Egypt.
Photo: Mikhail Rogov, Wikimedia Commons.

Read more…




Science for Designers: Scaling and Fractals


Monday, May 28, 2012 8:00 am

With apologies to real estate agents, we’d like to say that the three most important factors in design are scale, scale, and scale. One reason is that many of the worst environmental design blunders of the 20th century have been mistakes of scale — especially our failures to come to terms with the linked nature of scales, ranging from small to large. The cumulative consequence of these failures is that the scales of the built environment have become highly fragmented, and (for reasons we detail here) this is not a good thing. Can we correct this shortcoming?

Most designers know something about “fractals,” those beautiful patterns that mathematicians like Benoît Mandelbrot have described in precise structural detail. In essence, fractals are patterns of elements that are “self-similar” at different scales. They repeat a similar geometric pattern in many different sizes. We see fractal patterns almost everywhere in nature: in the graceful repetition at different scales of the fronds of ferns, or the branching patterns of veins, or the more random-appearing (but repetitive at different scales) patterns of clouds or coastlines.

M14-Figure1

Figure 1. The beautiful structure of fractals, patterns that are repeated and sometimes rotated or otherwise transformed at different scales. Left, a natural example of ice crystals (Photo: Schnobby@wikimediacommons). Right, a computer-generated fractal coral reef that, helped by color and shading effects, could be mistaken for a natural scene (Photo: Prokofiev@wikimediacommons).

Read more…



Categories: Science for Designers

Science for Designers: The Transformation of Wholes


Friday, April 13, 2012 8:00 am

The most commonly held and influential idea about design is that it’s the art of bringing essentially unrelated parts into a “composition” or an “assembly”. The funny thing is, from a scientific point of view, this idea is entirely wrong. A much better idea about design is that it’s the transformation of one whole into another whole. Not only is this definition more accurate, it’s also crucial for achieving an adaptive design.

Let’s talk about the important implications of this distinction between assembly and transformation.

Why is it scientifically wrong to say that design is the “composition” of essentially unrelated elements? Because nothing that works as a complete system is really “essentially unrelated” — though the sciences used to operate more or less successfully from that abstract premise, and much of technology still does. By contrast, the sciences of the last century have taught us more and more about the essential inter-relatedness of the Universe, from the largest scales of the space-time continuum, to the push-pull world of the quantum. In the biological sciences, we’ve come to understand the multi-layered, historical interdependence of systems, especially evident in the web-like relationships of ecological systems. Wherever we look in nature, we find vast and intricate networks of connections.

Read more…



Categories: Science for Designers

Science for Designers: The Meaning of Complexity


Friday, March 30, 2012 8:00 am

Today’s designers seem to love using new ideas coming from science. They embrace them as analogies, metaphors, and in a few cases, tools to generate startling new designs. (Computer algorithms and spline shapes are a good recent example of the latter.) But metaphors about the complexity of the city and its adaptive structures are not the same thing as the actual complexity of the city.

The trouble is, this confusion can produce disastrous results. It can even contribute to the slow collapse of an entire civilization.

We might think that the difference between metaphor and reality is so obvious that it’s hardly worth mentioning. And yet, such confusion pervades the design world today, and spreads from there into the general culture. It plays a key role in the delusional expectation that metaphors will create reality. Psychiatrists speak of this as an actual disorder known as “magical thinking”: if our symbols are good enough, then reality will follow.

In the hands of designers, this is very dangerous stuff. We see it at work in the failed iconic buildings that were sure to create economic development, or urban vitality, or greater quality of life purely because of a futuristic image. We see it also in the many “tokenistic” sustainability features (wind turbines, etc.) of other iconic new buildings whose actual performance in post-evaluation studies is woefully poor.

From the perspective of design methodology, this phenomenon is an interesting and important design problem in its own right. We recognize it as a fundamental weakness of human thought, and need to adjust our design methodologies accordingly. In this process, the methodologies and insights of a humane science, applied by literate designers, can be invaluable. Distinguishing physical from metaphorical complexity clarifies a presently confused and unsustainable situation, and can help us out of it (the ultimate aim of any science, and any philosophy).

The topics of urbanism, architecture, product design, environmental design, sustainability, and complexity in science are all tightly interrelated. Humans “design” with much the same aim toward which nature “designs” — both aim to increase the complexity of a system so that it works “better”. “Better” in this sense means more stable, more diverse, and more capable of maintaining an organized state — like the health of an organism. We learn from the structures and processes by which nature designs, so that we can also create and sustain these more organized states.

Some scientists shy away from the notion that nature “aims” for anything. But this begs the question: are we not part of nature, and do we not “aim” for something in our own designs, and in the other parts of our life (e.g. seeking our own health and wellbeing)? Then we must accept “aim” as a characteristic of at least some part of nature. Otherwise, we severely hobble the usefulness of the scientific tradition as a relevant tool for designers. (Indeed, we would set ourselves on a very dangerous philosophical path: in effect, rendering the very idea of intelligence — human or otherwise — as meaningless!)

untitled

Traditional city fabric evolved over generations as an extension of our own biology, thus representing an application of a kind of “collective intelligence” due to the system, not of any individual. Traditional Islamic urbanism, by Mustapha Ben Hamouche.

Read more…



Categories: Science for Designers

  • Recent Posts

  • Most Commented

  • View all recent comments
  • Metropolis Books




  • Links

  • BACK TO TOPBACK TO TOP

    Featuring Recent Posts WordPress Widget development by YD