
March 2010 • Observed
A Complete Rethink
William Mitchell and the MIT Media Lab take on one of urban America’s hidden foes: the car.
By Paul Makovsky
When you think about it, the cars we drive today haven’t fundamentally progressed since the days of the Model T. They’re fine for moving multiple passengers over long distances at high speeds, but they don’t work as effectively in cities. Moreover, why do most of the cars on the market today look the same? In their new book, Reinventing the Automobile: Personal Urban Mobility for the 21st Century (MIT Press), William J. Mitchell, who directs the Smart Cities research group at MIT’s Media Lab, and two industry experts, General Motors’ Christopher E. Borroni-Bird and Lawrence D. Burns (formerly of GM), reimagined the car. Metropolis’s editorial director, Paul Makovsky, spoke with Mitchell about how to make urban mobility more sustainable, why the car is a networked device, and why designers need to start thinking more holistically.
The title of the book is Reinventing the Automobile. What are some of the big ideas here?
The first one: design an ultralightweight, battery-electric automobile that’s specifically tuned to the needs of urban life, because most drivers actually live in cities. We came up with an automobile that’s less than 1,000 pounds. (Even a Prius is about 3,000 pounds.) When it’s unfolded—the car folds up for parking—it’s slightly shorter than a Smart Car. And from an energy standpoint, we’re talking about the equivalent of about 200 miles to the gallon.
All this comes from not just clever design but from rigorously redesigning the problem and saying, “Look, the architecture of the traditional automobile has been around for a hundred years now and responds to a set of conditions that made sense in the year of Henry Ford but doesn’t make sense anymore.”
And that’s just the first piece of the idea, correct?
That’s the vehicle level. And then the second idea is to integrate this with rethinking the electric grid, and particularly the emergence of smart grids. If you do plug-in cars that use the traditional grid, you’re relying on coal-fired power plants. You’re trying to make a cleaner and greener planet, but in the end power plants pump out huge amounts of CO2. So a key concept here is the idea of automatic recharging in parking spaces. It’s like your electric toothbrush. You never think about it. You put it back in its holder, and it recharges. This is critical. And it’s not the idea of electric charging that most people are thinking about.
Which is pull the plug and put it in the garage.
Yes, or battery swapping, which is an even dumber idea. Our idea is to shift the burden of recharging out of the moving vehicle and into fixed infrastructure. It’s looking at it from an urban-design perspective rather than a vehicle-design perspective. This throws an enormous amount of battery-storage capacity for free into the electric grid. Our electric auto is programmed to do energy trading back and forth, and this enables you to balance the energy flow, which is an important thing with electric grids.
Why?
A fundamental problem with electric grids is you have peak and off-peak situations, and you have to design for them accordingly. With smart grids, you can do very fine-grain dynamic pricing, and if you have smart consumers driving these smart electric automobiles, you can buy electricity when the prices are low and sell it when prices are high. This is an effective market-based way of balancing the electric grid. It also makes the grid much friendlier to clean-power sources, such as solar and wind. Right now there’s a big cost and practical disadvantage to these sources, because they don’t necessarily produce electricity when the grid needs it. They can exacerbate the grid-balancing problem. Here there’s a synergy between the grid and the way you’d want energy markets to work. The vehicles become dual-use devices. When they’re moving they provide mobility, and when they’re parked they’re not sitting around uselessly like a traditional automobile, but they’re producing power for the grid.
Talk about this idea of the car as an intelligently networked device.
Yes, they’re networked robots. Automobiles have connectivity now—GPS and increasing amounts of smarts—but they’re add-ons, and many of them are incompatible. The standard power supply in cars today is inadequate for supporting a lot of intelligence. Our notion is these lightweight autos that are much more like consumer-electronics devices than traditional automobiles. And my guess is they’re likely to be made on a large scale by manufacturers who look more like consumer-electronics manufacturers than traditional automakers. Once you’ve got that, you can extend the functionality of an automobile in all kinds of dimensions.
What kind of dimensions?
This is connected to the idea of mobility-on-demand systems as an alternative to private ownership of automobiles. The concept of doing stacks of electric vehicles at closely spaced convenient locations around the city. When you want to make a trip, you walk to the nearest stack, identify yourself electronically, pick up a car, and drive to a nearest drop-off point. It’s one-way rental. We can demonstrate that under most conditions, this gets you better door-to-door times than private-use automobiles.
Why? Because you’re not spending so much time looking for a parking spot?
Detroit always emphasizes getting into your car and traveling seamlessly to your destination. What they don’t mention? You have to park the damn thing at both ends. Private-automobile parking sucks up an immense amount of valuable urban real estate. It’s heavily subsidized, and the costs are hidden. We discuss that extensively in the book. Traditional automobiles sit around 80 percent of the time doing nothing. With mobility-on-demand systems, the automobile is useful all the time.







